
TECHNICAL REPORT 1859
September 2001

Best Wideband Impedance Matching

Bounds for Lossless 2-Ports

J. C. Allen
D. F Schwartz

Approved for public release;
distribution is unlimited.

SSC San Diego

20044048 043



TECHNICAL REPORT 1859
September 2001

Best Wideband Impedance Matching
Bounds for Lossless 2-Ports

J. C. Allen
D. F. Schwartz

Approved for public release;
distribution is unlimited.

SPA WAR
Systems CenterSan Diego

SSC San Diego
San Diego, CA 92152-5001



SSC SAN DIEGO
San Diego, California 92152-5001

Ernest L. Valdes, CAPT, USN R. C. Kolb
Commanding Officer Executive Director

ADMINISTRATIVE INFORMATION

The work described in this report was performed for the Office of Naval Research by the
Applied Research & Technology Branch (D363), SSC San Diego.

Released by Under authority of
G. W. Anderson, Head R. H. Moore, Head
Applied Research & Technology Environmental
Branch Sciences Division

SB



Abstract

The selection of a lossless 2-port to maximize the wideband power transfer from a
generator to a load is a ubiquitous problem in electrical engineering. The mathemati-
cal problem is to maximize the wideband transducer power gain over a class of lossless
2-ports. As a numerical optimization problem, wideband impedance matching is dif-
ficult because the wideband transducer power gain is a nonlinear, nondifferentiable,
badly scaled multivariable function. Therefore, any information on the global solution
is valuable to the engineer for assessing the quality of sub-optimal solutions computed
by numerical optimizers. In his classic 1950 paper, Fano determined a theoretical up-
per bound on the transducer power gain [16]. Specifically, the transducer power gain
of any lossless 2-port cannot exceed Fano's bound. Development of Fano's approach
continued through the 1960s [55], [41]. However, computing these bounds required
solving a highly nonlinear system of multivariate inequalities amenable only for sim-
ple cases. In the early 1970s, Helton made the amazing connection between operator
theory and electrical engineering [28]. Powerful Hardy space techniques were coupled
to the electrical engineer's Smith chart computations. In this framework, Nehari's
Theorem gave an upper bound on the transducer power gain computable as an (easy)
eigenvalue problem. This report shows that continuity conditions make this Nehari
bound tight.

Keywords. Impedance matching, transducer power gain, power mismatch, hy-
perbolic metric, scattering matrix, lossless 2-ports, Darlingtion's Theorem, Fano's
bounds, H-Infinity, Hardy spaces, Nehari's Theorem, continuous inner functions,
Blaschke-Potapov product, lumped 2-ports, lumped-distributed 2-ports, analytic op-
timization.
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1

The Matching Problem

Figure 1.1 shows a 2-port with scattering matrix S(p), the generator's reflectance
sc(p), and the load's reflectance SL(p). The matching problem is to find a lossless
2-port that maximizes the power delivered to the load that is available from the
generator. Table 1.1 lists the physical assumptions and mathematical properties of
these scattering functions. A complete listing of the H' notation is contained in
Section 1.1. If the 2-port is lumped and lossless, then its corresponding scattering

SG + -1 Lossless 2-port 2  +

SI S2

Figure 1.1: Matching circuit and reflectances.

matrix S(p) is a rational, real, inner1 function. The most general class of functions
that model lossless 2-ports are those H' functions that have unitary values:

U+(2) :-- {S E BH-°(C+, C2, 2) : S is lossless and real}.

Implicit in this definition is that a correspondence exists between circuits and their
mathematical models. When S(p) is a rational inner function, classical electrical
engineering can map S(p) to a lossless 2-port. When S(p) is not rational, S(p)

I"inner" means S(jw) is unitary a.e. [25, page 68], [17, page 186], [53, page 190] rather than the
more general notion that S(jw) is a partial isometry [48, page 94].
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can still map to a lossless 2-port provided S(p) has special functional forms. It is
natural to wonder if every scattering matrix in U+(2) corresponds to a lossless 2-
port. Section 3 makes explicit this circuit-scattering question for U+(2) and several
subclasses of scattering matrices.

Table 1.1: Physical and mathematical properties of a 1-port with scattering function
s(p) and a 2-port with scattering matrix S(p). The complex frequency p is denoted
p = a + jw. All scattering functions are referenced to a real impedance z0 > 0.

Physical Assumption Mathematical Model
1-port 2-port

Linear, Time-Invariant, s E H (C+) S E H(C+, C:x)
and Causal

Real s(p) = s(T) S(p) = S(P)

Passive s e BH(C+) S G BH_(C+, C2x2)

Lossless ls(jw)l = 1 a.e. S(jw)HS(jw) = 12 a.e.

Continuous on jR. sE A, (C+) S E A, (C+, C 2 x2)

The transducer power gain GT is the ratio of the power delivered to the load to
the maximum power avaliable from the generator [46, pages 606-608]:

(P) 1- Is(p) 2  1- ISL(P)I2
GT (8G, S, SL;P)----1( I - sl(p)SG(p)12 I1 - s22(p)SL(p) 12

Here, si(p) is the reflectance looking into Port 1 with Port 2 terminated in sL(p):

s1 (p) = .T,(S, sL;p)

Sll(P) + S2(P)SL(P)(1- S22(P)SL(P)>1 lS21(P).

Likewise, s2(p) is the reflectance looking into Port 2 with Port 1 terminated in sc(p):

s2(p) = .F2(S,sG;p)
s22(P)+ 821(p)sc(p)(1- sl(p)sG(p))-ls 2 (p).

The smallest or worst transducer power gain GT over a frequency band Q is

IIGT(SG, S, SL)loc,O := inf{GT(SG, S, sL;jW) : w E Qj}.

For a given collection of U C U+(2) of lossless 2-ports, the matching problem is to
maximize the transducer power gain over U:

sup{IIGT(sc, S, sL)][-,, : S E U}.
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In this report, sC and SL are fixed and Q = R. Therefore, dependence on these
elements is suppressed and we will find it handy to simply write

gT(S) := IGT(sG, S, sL)I-.

With this notation in place, it is worthwhile to consider the mapping gT : U -+ ]R+ as
an optimization problem. The standard optimization questions are (1) existence, (2)
uniqueness, and (3) computation of optimal and sub-optimal matching circuits. The
Weierstrass Theorem guarantees existence of maximizers for those functions contin-
uous on a compact set.

Theorem 1 (Weierstrass [42, page 40], [59, page 152]) An upper semicontin-
uous functional on a compact subset U of topological space achieves a maximum on
U.

The Weierstrass Theorem gives one approach to maximizing the transducer power
gain (TPG) by establishing the continuity of gT and the compactness of U. This
straightforward approach suffices when U is the lumped 2-ports U+(2, d) of degree d
(Section 4). However, U+(2) is not compact and requires a different approach. The
idea is to convert the 2-port matching problem to an equivalent 1-port problem. With
an abuse of notation, the transducer power gain is bounded as follows:

sup{lGT(sG,S,sL)jj- : SE U}
= sup{IIGT(72(S,sG),SL)II- : S EU}
= sup{lIGT(S2,SL)I-.:S 2 E Y 2(U,Sc)}

_ sup{JIGT(S2, SL)II-. : S2 E BH'(C+)}.

The last supremum is computable by Nehari's Theorem using the "L' Disk Trick".
This Nehari bound on the gain holds for any U C U+(2). When U is the class of all
lumped 2-ports U+(2, oc), Darlington's Theorem (Section 5) establishes that

sup{IIGT(SG =O,S,sL)L- : SE U+(2,oo)}

= sup{I IGT(S2,SL) I : S2 E A,(C+)}

sup{I1GT(S, SL)11- : S2 E BH (C+)}.

Section 6 eliminates the inequality, provided SL is sufficiently smooth. The power of
this approach is that the global solution of the matching problem is computed by the
Nehari bound. The limitations of this approach require that sc = 0. It does not
supply the matching circuit. Section 7 increases the magnification to answer when
minimizer S2 exists and is unique. Section 8 concludes by linking the minimizer S2
to the "dilation theory" of Helton and Douglas [13], [14]. Darlington's Theorem and
the "L' Disk Trick" have emerged as the analysis tools in this effort.
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1.1 H' Notation

The real numbers are denoted by R. The complex numbers are denoted by C. The
set of complex M x N matrices is denoted by CMXN. Complex frequency is written
p = u + jw. The open right-half plane is denoted by C+ := {p E C : [p] > 0}. The
open unit disk is denoted by D and the unit circle by T. The "end-of-proof" symbol
is "/7/".

L°° (jR) denotes the class of Lebesgue-measurable functions defined on jR with
norm determined by the essential bound

11011. := ess.sup{fl(jw)j : w E R}.

C(jR) C L'(jR) denotes the class of continuous functions with norm

I1111 := sup{Iq(Jw)l : w E R}.

Co(jR) C C(jR) denotes those continuous functions that vanish at ±0. The Hardy
space of functions bounded and analytic on C+ is denoted by H'°(C+). Its norm is

IHhIlj := sup{fh(p)I : p E C+}.

H0 0(C+) is also a subspace of L°(jR) obtained by the limit [40, page 153]

h(jw) = lim h(T + jw)

that converges pointwise almost everywhere. Convergence in norm occurs if and
only if the H'. function has continuous boundary values. Those H' functions with
continuous boundary values constitute the "disk algebra" denoted by A(C+). Two
spaces of the disk algebra that are needed are those that vanish at infinity:

Ao(C+) := A(C+) n Co(jR)

and those that are constant at infinity:

AI(C+) := 1-Ao(C+).

These spaces nest as

Ao(C+) c A1 (C+) c A(C+) c Hoc(C+) c L"Q(jR).

Tensoring with CM×N gives the corresponding matrix-valued functions:

LOO(jR, CMXN) := LOO(jR) ® CMxN

with norm

1101100 := ess.sup{0(jw) : w E R}.
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The open unit ball of H-(jR, CMxN) is denoted as

BH-(jR, CMxN) := {h C H-(jR, CMxN): hjjko < 1}.

The closed unit ball of H-(jR, CMxN) is denoted as

-H-(jR, CMxN) := {n G H(jR, CMxN): lhli0, < I}.

An h E H-(jR, CMxN) is called real, provided

h(p) = h(p)

for p E C+. The class of real H'(jR, CMXN) functions is denoted as

lRH-(jR, CMxN) = {h E H-(jR, CMXN): h(p) = h(p)}.

1.2 The Caley Transform

Many computations are more conveniently placed in function spaces defined on the
open unit disk D rather than on the open right half-plane C+. The notation for the
relevant function spaces on the disk follows the preceeding nomenclature with the
unit disk D replacing the C+ and the unit circle T replacing jR. H'(D) denotes
the collection of analytic functions on the open unit disk with essentially bounded
boundary values. C(T) denotes the continuous functions on the unit circle, A(D)
denotes the disk algebra

A(D) := H(D) n C(T),

and L (T) denotes the Lebesgue-measurable functions on the unit circle T with
norm determined by the essential bound. A Cayley transform connects the function
spaces on the right half plane to their counterparts on the disk.

Lemma 1 ([26, page 99]) Let c: C+ -> D denote the mapping

c(p) 
p

p +1'

also define the composition operator c : H' (D) -4 H'(C+) as

h(p) := H o c(p).

Then,

(a) c is a isometry of H'(D) onto H'(C+).
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(b) c is an isometry mapping A(D) onto 41(C+) c A(C+).

If c also denotes the mapping from jR to T, then the associated composition operator,
also denoted by c, maps as c : L'(T) -+ L'(jR), and has the following properties:

(c) c is a isometry of LOO(D) onto LO(C+).

(d) c is an isometry mapping C(T) onto 1 i-Co(jR) C C(jR).

1.3 Nehari's Theorem

Nehari's Theorem is a fundamental tool in H' theory and most conveniently stated
on the open unit disk D. Let 0 C L'(T) admit a Fourier expansion given by

ono

q5(eio) S (n)e.
n= -oo

The classic multiplication operator MO acting on L 2(T) is given by M!h = h.
Various blocks of MO have been studied for the last 80 years. Let P denote the
orthogonal projection of L2(T) onto H 2(D). The Hankel operator associated with
¢ is the operator HO mapping H 2(D) into H 2(D)' given by HO = (I - P)MO. Its
matrix representation with respect to the Fourier basis is

14= (-2) $(-3) $(-4) ...

He (-3) $(-4) 4(-5) ...

L . .•

The essential norm IIHOle is

IHlli :e inf{IIHp - K1I Kcompact}.

The first result is a simple version of Nehari's Theorem that emphasizes existence
and uniqueness of best approximations.

Theorem 2 (Nehari [58], [47]) Let k E L'(T). Then,

L-1 Ilk - H"(D)II. = lIHkII.

L-2 Ilk - {H-(D) + C(T)}Jloo = IlHk~le.

L-3 If IlHkll < IjHkIl then k C L'(T) admits a unique best approximation from

H-(T).
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1.4 The Weak* Topology

The weak* topology in L' and H' is used in the L' Disk Trick, so a short review
follows. A weak* subbasis at 0 E Lcc(jR) is the collection of weak* open sets

O[w,e] :{ E L'(jR) [(w,¢)1 < e},

where E > 0, w E L1(jR), and 00
(w, 1) 0= w(jw)¢(jw)dw.

Every weak* open set that contains 0 E L'(jR) is a union of finite intersections of
these subbasic sets. The following result is one way to handle weak* closure for the
L" Disk Trick.

Lemma 2 Ij q E Lc(jR), then MO is weak* continuous on L"(jR).

Proof. To show MO is weak* continuous, it suffices to shows that MO pulls subbasic
sets back to subbasic sets. Let E > 0, w E L 1(jR). Then,

'i bCMj 1(O[w,e]) €= MP * O[w,e]

V=. E [w, E],

noting that Ow G L' (jR). //

A more general way to handle the weak* closure in the proof of the L" Disk Trick
is to use weak* sequential compactness. From Simmons [52, page 121]: A metric
space is sequentially compact if every sequence in it has a convergent subsequence.

Lemma 3 Let K C BLOC(jR). The following are equivalent:

(a) K is weak* compact.

(b) K is weak* sequentially closed.

Proof. A general result that establishes metrizability for subsets of a dual space is
the following:

Rudin [49, Theorem 3.16]: If X is a separable topological space, if K C X*,
and if K is weak*-compact, then K is metrizable in the weak'-topology.
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Because PL'(jR) weak* compact (Banach-Alaoglu [49, Theorem 3.15]), it follows
that BL'(jR) is metrizable in the weak* topology. Metrizability links compactness
and sequential compactness:

Simmons [52, page 124] If K is a metric space, then K is compact if and
only K is sequentially compact.

If K C -BL-(jR), then K is also metrizable in the weak* topology. Consequently,
weak* compactness of K is equivalent to weak* sequential compactness of K. ///

The Banach-Alaogalu Theorem [49, Theorem 3.15] gives that the unit ball BL (jR)
is weak* compact. The preceding results show that same holds for a distorted version
of the unit ball. Because this is a critical result, we offer two proofs.

Lemma 4 Let k, r E L'(jR) with r > 0 a.e. Then, the disk

r(k, r) :== { E L'(jR): 0i(jw) - k(jw)I r(jw) a.e.}

is weak* compact.

Proof 1. The formal sequence of equivalences

CiD(k,r) 4=> 1¢- kj < r

= ir-'s - r-1 k < 1
= r-1q E r-lk +-BL-(jR)

0 G k + M,.-BL(jR)

leads us to the equality

D(k, r) = k + Mr(-BL-(jR)).

Observe that -Lc(jR) is weak* compact. Lemma 2 gives that M, is weak* con-
tinuous. The image of a compact set under a continuous function is compact [52,
Theorem 21-B]. Thus, M,(BL'(jR)) is weak* compact and, therefore, implies that
D(k, r) is weak* compact.

Proof 2. If 0 E D(k,r), then 1101[K _ Ilk]iK + rlnK =: R or that D(k,r) C
R-BL (jR). A scaled version of Lemma 3 makes weak* compactness equivalent to
weak* sequential compactness. Let 0¢, E D(k, r) and assume {¢0} converges weak*
to 0. For any w E L 1(jR), we obtain

8



Taking the limit gives
I * k - 0) 1<! (lwl, r).

Because w E L1 (jR) is arbitrary, we obtain Ik - 01 < r or that q C D(k, r). Thus,
D(k, r) is weak* sequentially compact and then must be weak* compact.///

We will need to know that A,(C+) is weak* dense in H' (C+). On the unit circle,
A(D) is weak* dense in H(D). To obtain this result, let h E H0 (D) and set

hr(z) := h(rz).

As r -4 1, hr converges weak* to h [26, page 77], [40, page 13], [12, Exercise 6.43].
Observe that hr E 4(D) to get the density claim. The same trick holds on the right
half-lane.

Theorem 3 A,(C+) is weak* dense in H00(C+).

Proof. Suppose that w E L'(jR). Let h E H-(C+). For c > 0, define h,(jw)
h(u + jw). From Koosis [40, page 153]:

lim h(ca + jw) = h(jw) a.e.

Observe that h, E .A,(C+). The Lebesgue Dominated Convergence Theorem gives
that

lim(w, h - h,) = 0,

or that h, converges weak* to h. This implies A,(C+) is weak* dense in H' (C+). ///

Observe that U+(2) is closed. Indeed, if {S 1} C U+(2) converges to S E H' (C+, C2
1

2),
then S7 (jw) -+ S(jw) almost everywhere so that

12 = lim S,(jw)gS,(jw) = S(jw)HS(ji) a.e.

That is, S(jw) is unitary almost everywhere or S E U+(2). However, U+(2) is not
weak* closed.

Example 1 Define S, E U+(2) as
S" 1- (P ( Y[ 1 0 J

Then, S, converges weak* to zero.

Because zero belongs the weak* closure of U+ (2), we make the extreme conjecture:

Conjecture 1 The weak* closure of U+(2) is BPH-(C+, C2x2).
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2

The Power Mismatch

The key to analyzing the transducer power gain is the power mismatch. Power mis-
match is known in both mathematics and electrical engineering [35]:

The transformation through a lossless junction [2-port] ... leaves invariant
the hyperbolic distance ... The hyperbolic distance to the origin of the
[Smith] chart is the mismatch, that is, the standing-wave ratio expressed
in decibels: It may be evaluated by means of the proper graduation on
the radial arm of the Smith chart. For two arbitrary points WI1, W2, the
hyperbolic distance between them may be interpreted as the mismatch
that results from the load W2 seen through a lossless network that matches
W to the input waveguide.

Hyperbolic metrics have been under mathematical development for the last 200 years.
It is fascinating to see how this analysis transcribes to electrical engineering. This
section reviews the relevant mathematics, makes explicit the connection to the power
mismatch, and concludes by linking the transducer power gain, the lossless 2-port,
and the reflectances shown in Figure 1.1.

Mathematically, we start with the pseudo-hyperbolic' metric on D [60, page 58]:
for all sl, 82 E D:

p(S, S1 - S2

The M6bius group on D consists of all maps g : D -+ D [31, Theorem 5.4c]:

g(s) = sa

'Also known as the Poincar6 hyperbolic distance function [54].
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where a E D and 0 C R. That p is invariant under the M6bius maps g is fundamental
[60, page 58]:

p(g(s),g(s 2 )) = p(s, s2 ).

The hyperbolic2 metric on D is [60, page 59]:

O(sl,s2)= Ilog ( + P(SI, S2))

Because p is Mdbius-invariant, it follows that /3 is also Mbbius-invariant:

03(g(sI),g(s2)) = O(Sl,s2).

The series inductor of Figure 2.1 provides an excellent example showing the action
of a circuit as Mbbius map acting on the unit disk.

il

VI V2

Figure 2.1: Series inductor 2-port.

The series inductor has the scattering matrix [23, Table 6.2]:

S(p) = 2+Lp 2 Lp

and chain scattering matrix:

E (p) I1-Lp/2 Lp/2 1
-Lp/2 1 + Lp/2 J

The chain scattering matrix acts on s E D as

g(E;s)- llS +E)12 a s-a

8 2 1s + 8 22  a 1 - -ds a=(l+j2!(wL))-"

2Also known as the Bergman metric or the Poincar6 metic
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Figure 2.2 shows the Mbbius action of this lossless 2-port on the disk. Frequency
is fixed at p = j. The upper left panel shows the unit disk partitioned into radial
segments. Increasing the inductance, warps the radial pattern to the boundary. The
radial segments are geodesics of p and 3. Because the M6bius maps preserve both
metrics, the resulting circles are also geodesics. More generally, the geodesics of p
and 3 are either the radial lines or the circles that meet the boundary of the unit disk
at right angles.

L=0 L=I

0.5 0.5

-0.5 -0.5

-1 -0.5 0 0.5 1 -I -0.5 0 0.5 I
3z 91

L=2 L=3

-0.5 X-0.5

C)0

-0.5 -0.5

-I -I
-1 -0.5 0 0.5 1 -I -0.5 0 0.5

91 91

Figure 2.2: Mbbius action of the series inductor on the unit disk for increasing induc-
tance values (frequency fixed at p = j).

Turning to electrical engineering, basic matching functions are the power mis-
match, the VSWR, and the transducer power gain. The power mismatch between
two reflectances sl, s2 E BHc(C+) is provided by Helton [28]:

sS(P) - s2(p)1:= 1- SI(P)S2(P)

This is the pseudo-hyperbolic distance p(a9,s 2 ) between -9 and s2. Referring to
Figure 2.2, the power mismatch is the pseudo-hyperbolic distance between a! and s 2
measured along their geodesic. Thus, the geodesics of p attach a geometric meaning
to the power mismatch and illustrate the quote at the beginning of this section. The
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voltage standing wave ratio (VSWR) is determined by reflectance s [5, Equation 3.51]:

VSWR(s) = 20 loglo 1 +  [dB].(1 -ISI)

Thus, the VSWR is a scaled version the hyperbolic distance 3(s, 0) from the origin
to the reflectance s. Referring to Figure 2.2, the VSWR is the hyperbolic distance
from the origin to s measured along its radial line. Thus, the geodesics of 3 attach
a geometric meaning to the VSWR. The transducer power gain GT is defined in the
context of Figure 1.1. As the next result shows, maximizing GT is equivalent to
minimizing the power mismatch at either Port 1 or Port 2-provided the matching

2-port is lossless.

Lemma 5 Assume the setup of Figure 1.1. Let S E U+(2). Let sG, SL E BH° (C+).

Both sI = .771(S, SL) and S2 = .F2(S, sa) are well-defined and belong to BH°c(C+).
Both the LFT law

AP(sG,I(S,SL)) = f- s 1  - S2sL AP(- 2 (SSC),SL)

and the TPG law

GT(SG, S, SL) = 1 - 7P(s7,1 (S, SL)) = 1 - AP(-T2 (S, SG), SL) 2

hold on jR.

Proof. The chain scattering representations are provided by Hasler and Neirynck
[23]:

g (E)1; s) := l .(S, s), E), ~ det[S] sil
S2 1 [ -S22 1j

g(E2 ;s) :=2) 2 (S,s), 2 1 [ -det[S ] S2 2 1
812 -S1 Ij

where "-" denotes equality in homogeneous coordinates: e - 4) if and only if 9(8) -
9(1). Because S(p) C U+(2), it follows that S(p) is unitary on jR. This forces 8 1 (p)
and ®2(p) to be J-unitary on jR as provided by Helton [28]:

OHJE = J = 0 -0

Fix w E IR. Define the maps gi and g2 on the unit disk D as

gi(s) := g(e1 (jw), s)
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92(S) := (e 2 (jW), S).

Because 91 (p) and 8 2 (p) are J-unitary on jR, it follows that g, and 92 are invertible
automorphisms of the unit disk onto itself with inverses:

92 1 (8) = ((92(jW) -1, S), Ei2(jW)-'l [-S(W det[20W)]

g~1 () =g~e(jw-',s, e(jw-' -S11(jw) det[S(jw)]

Because the gk's and their inverses are invertible automorphisms, we obtain from
Geobel and Reich [19]:

g(SI) - g(S2) S1-S

1 (Sl)g(S2 ) 1 -

for sl, S2 C: D and g, denoting either gi, 92, g1j, or g2 . For all p G jJR, we obtain

AP(S2, SL) = S2 - L

1 - S2SL

g2(SG) -- §L

1 92(SG)SL

1G - sg21(-§L)

=AP(SG,g92
1(3-7)).

Then, AP(s 2 , SL) =AP(sG, sl), provided we can show s, = g2 1(-gLj). In terms of the
chain matrices, this requires us to show

This equality will follow if we can show E), 192 or that

@1" S22 /det ] ~/ det [S] I [ -1 det[S 2

Because S(p) is inner, det [S] is inner so that det [S] = 1/ det [S] on jR. Also, on jR,
S(p) is unitary so that

S 1 8 22 -S 12 T 1 F 1
S -det[S] I[-S2 1  S11 j 2 T22~

Then, T22 su/det[S] and Tj-- = S22 /det[S]. Thus, el - 2 so that s, = g (L

or that the LET law holds. Although a tedious computation can establish the link
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between the transducer power gain and the power mismatch, the following classical
equality is useful [60, page 58]. For si, S2 e D,

1 -p(s 1 ,s2)2 = (1 -Isil
2)(1 - Is212)XS1, S2I1 -91s2 12

It is worth remarking that the LFT law is not true if S is strictly passive. For

S E PH-(C+, C 2 X2 ), define the gain at Port 1:

Gl(SG, S, SL) 1- AP(G,Fl(S, SL)) 2

and the gain at Port 2:

G2(SG, S, SL) 1 - AP(.,T2 (S, SG), SL) 2 .

Lemma 5 gives that GT - G, = G2, provided S is lossless. However, when S is
passive, there is numerical evidence that GT < G1, G2.

Question 1 Let S E BH-(C+,C2x 2). Let sG, SL E BH'(C+). Do the following
the TPG inequalities hold?

GT(sG, S, SL) 1 - AP(soh(SsL))
2

GT(SC, S, SL) _ 1 - AP(- 2 (S, SC), SL) 2

How can the passivity of S quantify the inequalities?

Finally, a question evaded at the start of this section is the problem of handling
reflectances that are not strictly passive.

Question 2 For which sj, S2 E 7PH'(C+) is AP(s1 , s2 ) well-defined?
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3

Classes of Lossless 2-Ports

The matching problem has been formulated as an optimization problem over U+(2).
Although U+ (2) is a fundamental set, we have only offered a mathematical definition
of U+(2). Because there are many types of lossless matching networks, it is important
to put U+ (2) in an electrical engineering context. This will make precise the matching
and how it relates to more familiar electrical engineering solutions. We will obtain a
nested collection of matching sets:

U+(2, d) C U+(2, oo) C U+(2) C BH (C+, C 2x 2).

On the left, U+ (2, d) corresponds to the lumped, lossless 2-ports. Optimization over
this set represents an electrical engineering solution. On the right, the H' solution is
computable from the measured data. However, it may not correspond to any lossless
scattering matrix. This gap between the H' solution and the various electrical
engineering solutions is closed by continuity conditions.

There are two important distinctions to observe. First, when we refer to a lossless
scattering matrix S(p), the only requirement is that S(p) be a real inner function:
S E U+(2). Second, when we refer to a 2-port, we assume that an electrical circuit,
however impractical, does exist. One of the great topics of electrical engineering is
the mapping between N-ports and their corresponding representation by a scattering
matrix. Depending on how one defines an N-port, the claim is that every linear, time-
invariant, causal, passive N-port admits a scattering matrix. This circuit-scattering
correspondence is a basic theme of this report.

3.1 U+(2, d)

Any lumped, lossless, 2-port admits a real, rational, lossless scattering matrix S(p).
Conversely, a real, rational, lossless scattering matrix S(p) can be mapped to a
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lumped, lossless 2-port [55, Theorems 3.1, 3.2]. This equivalence permits us to delin-
eate the following class of lossless 2-ports:

U+(2, d) := {S E U+(2) : degsM[S(p)] < d},

where degsM[S(p)] denotes the Smith-McMillan degree of S(p). S(p) is rational if
and only it has a finite Smith-McMillan degree. Belevitch's Theorem parameterizes
U+ (2, d):

BELEVITCH'S THEOREM [56] S E U+(2, d) if and only if

s s11(p) 812(P) 1 = 1 [ h(p) f(p)s21(p) s22(p) g(p) L±f(p) Fh,(p) J

where

B-1 f(p), g(p), and h(p) are real polynomials,

B-2 g(p) is strict Hurwitz of degree not exceeding d,

B-3 g.(p)g(p) = f.(p)f(p) + h.(p)h(p) for all p c C.

This representation is basic to the Bode-Fano-Youla gain-bandwidth bounds [7, Chap-
ter 4]. Belevitch's Theorem gives the following inclusion:

Lemma 6 Let d > O. U+(2, d) C A,(C+,C2×2).

Proof. Let
1 Fh :Ffl

S f,, =h, '

where (f, g, h) is a Belevitch triple. Let M and N denote the degree of h(p) and g(p),
respectively. Boundedness forces M < N. Then,

h(p) ho +... + hMpM { 0 M<N

g(p) = + + 9NpN hN/gN M = N

Thus, h(p)/g(p) is continuous across p = ±joc. Similar arguments apply to the other
entries. Thus, S(p) is continuous at ±joo. ///

This inclusion gives us the following compactness of the scattering matrices that
represent the lumped, lossless 2-ports of degree not exceeding d.

Theorem 4 Let d > 0. U+(2, d) is a compact subset of H, (C+, C212).
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Proof. Let C(T, C
2 x 2 ) denote the continuous functions on the unit circle T. Let

R'L denote those rational functions g-'(q)H(q) in C(T, C 2 × 2 ) where g(q) and H(q)
are polynomials with degrees a[g] M and o[H] < L. The Existence Theorem [10,
page 154] shows that 7ZL is a boundedly compact subset of C(T, C2,2). Lemma 1
shows the Caley transform preserves compactness. Thus, 7ZL o c is a boundedly
compact subset of 1IC(jR, C2x2). The remarks at the end of Section 1.4 show that
U+(2) is a closed subset of L00(jR, C2X2). The intersection of a closed and bounded
set with a boundedly compact set is compact. Thus, U+(2) n R L o c is a compact
subset of 1-C(jR, C2X2). We claim that U+(2, d) = U+(2) n R d o C. Observe 7' o c
consists of all rational functions with the degree of the numerator and denominator
not exceeding d and that are also continuous on jR, including the point at infinity.
If S E U+ (2) n 7Zd o c, then degsM [S] < d. This forces S into U+ (2, d). Consequently,
U+(2, d) D U+(2) n 7Zd o c. For the converse, suppose S E U+(2, d). The Belevitch
Theorem and Lemma 6 force S into 7Zd o c. Thus, U+(2, d) _ U+(2) nT 7Z o c and
equality must hold. Thus, U+(N, d) is compact. ///

Section 4 will demonstrate that the gain is a continuous function on U+(2, d).
Thus, the matching problem on U+(2, d) has a solution. The compactness of U+(2, d)
also forces compactness for several classes of 2-ports. For example, the low-pass LC
ladders of Figure 3.1 admit the scattering matrix characterization [3, page 121]:

S21 (P) = (p) _ 1
g(p) g(p)

These scattering matrices (f(p) = 1) form a closed and therefore compact subset
of U+(2, d). Consequently, the matching problem on the low-pass ladders of degree
not exceeding d admits a solution. Similar closure arguments apply to the high-pass
ladders.

2

ST T
Figure 3.1: A low-pass ladder.
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3.2 U+(2,oo)

A natural generalization drops the constraint on the number of reactive elements in
the 2-port and asks: What is the matching set that is obtained as degsM [S(p)] -+ 0?
Define

U+(2,oo) U U U+(2, d).
d>O

The physical meaning of U+(2, oo) is that it contains the scattering matrices of all
lumped, lossless 2-ports. It is worthwhile to ask if the closure has picked up additional
circuits. Belevitch's Theorem not only makes S E U+(2, d) continuous on jR, but also
forces continuity at infinity. Because A,(C+, C2x2) closed, it follows that U+(2, cc) C
Al(C+, C2x2) is also closed. It is natural to ask: What lossless 2-ports belong to
U+(2, w)? The transmission line provides an excellent counterexample.

Example 2 (Transmission Line) A uniform, lossless transmission line of charac-
teristic impedance Z, and commensurate length I is called a unit element (UE) with
transmission matrix [3, Equation 8.1][ij= [ cosh(Trp) Zcsinh(-rp) V2J

il Y sinh(Tp) cosh(-rp) -i 2

where T is the commensurate one-way delay T = l/c determined by the speed of prop-
agation c.

+0 > -> - 0-+
Zo

V 1  V2

-0 ....... 0 -

Figure 3.2: The unit element (UE) transmission line.

The impedance matrix is

ZuE(p)- sinh(-p) c cosh(-p)"

The scattering matrix normalized to Zc is

SUE(P) = (Z(p) + Zc-)'(Z(p) - ZjI2 ) 0[ e-' ]
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The transmission line gives rise to two observations: First, SUE(jw) oscillates
out to ±oo, so SuE(jw) cannot be continuous across ±oo. Thus, U+(2, o) cannot
contain such a transmission line. Second, a physical transmission line cannot behave
like this near ±oo. Many electrical engineering books mention only in passing that
their models are applicable only for a given frequency band. One rarely sees much
discussion that the models for the inductor and capacitor are essentially low-frequency
models. This holds true even for the standard model of wire. One cannot shine a
light in one end of a 100-foot length of copper wire and expect much out of the other
end. These model limitations notwithstanding, the circuit-scattering correspondence
will be developed using these standard models. The transmission line on the disk is-

SUE 0 c-'(z) =0 exp (_ 10

and is recognizable as the simplest singular inner function [34, pages 66-67] analytic
on C \ {1} [34, pages 68-69]. Figure 3.3 shows the essential singularity of the real
part of the (1,2) element of SUE 0 c-1 (z) as z tends toward the boundary of the unit
circle.

9ZI[ S,2 re 10)]: -- 0.9

0.5

K 0

-0.5

-I -150 -100 -50 0 50 100 150

E50.0

-0.5

-150 -0 -50 O 50 100 150

0.5

&e 0-

-0.5

-I.

-ISO -100 -50 0 50 100 150

0 (0g)

Figure 3.3: Behavior of R[SUE,12 o c-1 (z)] for z = re" as r -*1.

The continuity restriction is substantial. For example, the (infinite) Blaschke
products can uniformly approximate any scalar-valued inner function.

FROSTMAN'S THEOREM [40, page 119] Let s be any inner function. For

any e > 0, there is a Blaschke product b(z) and 00 E [-7r, 7r] such that
Is - e K°0b,1 < C.
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If all the Blaschke's were continuous, then Frostman's Theorem would force all
inner functions to be continuous. Continuity forces any continuous inner function to
be rational.

Lemma 7 Let h E H' (D) be an inner function. The following are equivalent:

(a) h E A(D).

(b) h is rational.

Proof.
(a==b) Factor h as h = cbs, where c E T, b is a Blaschke and s is a singular inner
function. If za E T is an accumulation point of the zeros {z,} of b, that is, there is
a subsequence Znk -+ za, then continuity of h on D implies that 0 = h(zk) --+ h(za).

Continuity of h on D gives a neighborhood U C T of Za for which Ih(U)I < 1. Thus,
h cannot be inner with b an infinite Blaschke product. Thus, b can only be a finite
product and has no accumulation points to cancel the discontinuities of s. More for-
mally, b never vanishes on T and neither s nor Isl is continously extendable to from
the interior of the disk to any point in the support of the singular measure that rep-
resents s [34, pages 68-69]. Thus, h cannot have a singular part and we have h = cb.
(b=>a) A rational h also in H'(D) cannot have a pole in D. Then h is continuous
on D so belongs to the disk algebra. ///

This result lifts to U+(2, co) using the generalizations of Potapov [39]. For a G D,
define the elementary Blaschke factor as provided by Katsnelson and Kirstein [39,
Equation 4.2]:

(z):= a -z 0

z a=O

To get a matrix-valued version, let P E CMxM be an orthogonal projection: p 2 = p
and pH = p. The Blaschke-Potapov elementary factor associated with a and P is
[39, Equation 4.4]:

Ba,p(Z) := 'M + (ba(Z) - 1)P.

There are a couple of ways to see that Bp is inner. Let U be a unitary matrix that
diagonalizes P:

UHPU= IK 0]

0 0"

Then,

UHBa,p(Z)U [ ba(Z)IK 0]
0 2M2K
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From this, we get the following from by Katsnelson and Kirstein [39, Equation 4.5]:

det[Ba,p(z)] = ba(z)rank[P].

Definition 1 ([39, pages 320-321]) The function B : D -+ CMxM is called a left
Blaschke-Potapov product if either B is a constant unitary matrix or there exists a
unitary matrix U, a sequence of orthogonal projection matrices {Pk : k E K }, and a
sequence {Zk : k E )} C D such that

Z(1 - IzkI)trace[Pk] < 00
kGIC

and the representation

B (z) = {H BzkPk(Z)} U

holds.

Definition 2 ([39, pages 319]) Let S E H'(D, CMXM) be an inner function. S is
called singular if and only if det[S(z)] $ 0 for all z E D.

Theorem 5 ([39, Theorem 4.1]) Let S G HO(D, CMXM) be an inner function.
There exists a left Blaschke-Potapov product and a CMxm-valued singular inner func-
tion , such that

S = BZ.

Moreover, the representation is unique up to a unitary matrix U. If

S = B 1E1 = B2-2,

then B 2 = B 1U and E 2 = UHB! •

Critical for our use is that the determinant maps these matrix-valued generalizations
of the Blaschke and singular functions to their scalar-valued counterparts.

Theorem 6 ([39, Theorem 4.2]) Let Se BHE H(D, CM xM ).

(a) det[S] E BH'(D).

(b) S is inner if and only if det[S] is inner.

(c) S is singular if and only if det[S] is singular.
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With these results in place, Lemma 7 admits the following matrix-valued generaliza-

tion.

Corollary 1 Let S G H'(C+, C2x2) be an inner function. The following are equiv-
alent:

(a) S E ,Ai(C+,C 2x 2 ).

(b) S is rational

Proof.
(a=ab) Lemma l and Assumption (a) give that W = S o c - ' is a continuous inner

function in A(D, C2x2). Theorem 5 gives that W = BE for a left Blaschke-Potapov
product B and singular E. Observe that det[W] = det[B] det[E]. If W is inner, then

det[W] is inner by Theorem 6(a). Because W is continuous, det[W] is continuous and

Lemma 7 forces det[W] to be rational. Therefore, det[W] cannot admit the singu-

lar factor det[-E]. Consequently, W cannot have a singular factor by Theorem 6(c).

Because det[W] is rational and

det[W] = det[B] = nI b'k[P]
Z
k

we see that B must be a finite left Blaschke-Potapov product. Consequently, S = Woc

is rational. Finally, this gives that S is rational.
(b a) Belevitch's Theorem puts S in U+(2, d). Lemma 6 puts S in .A,(C+, C2x2). ///

Thus, continuity forces S(p) E U+(2, oo) to be rational and the corresponding
lossless 2-port to be lumped. Consequently, the scattering matrices of the lumped,
lossless 2-ports are exactly all of U+(2, oo).

3.3 U+(2)

The definition of U+(2) is strictly mathematical: S E U+(2) if and only if S(p) is

an inner function. It is generally accepted that a lossless 2-port admits a scattering

matrix S(p). Losslessness gives S(jw) unitary values so that S(p) belongs to U+(2).

It is natural to consider the converse.

Question 3 Does every element in U+(2) correspond to a lossless 2-port?

Turning to the inclusion U+(2, oo) C U+(2), the preceding sections have estab-

lished that U+(2, oo) is a closed subset of U+(2) that consists of all rational inner
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functions parameterized by Belevitch's Theorem. Physically, U+ (2, 00) models all the
lumped 2-ports, but does not model the transmission line. It is natural to wonder
what subclass of U+(2) contains the lumped 2-ports and the transmission line. More
precisely, (1) what constitutes a lumped-distributed network? (2) how do we recog-
nize its scattering matrix? Wohlers [55] answers the first question by parameterizing
the class of lumped-distributed N-ports, consisting of NL inductors, Nc capacitors,
and Nu uniform transmission lines using the model in Figure 3.4.

0-
Wires

0-0

Transformers

0Sa SL

0-0

Gyrators

Figure 3.4: State-space representation of a lossless 2-port. The augmented scattering
matrix S, models the non-reactive multiport. The augmented load Sr. models the
reactive elements.

Let U+(N, NL, NC, Nu) denote this class of scattering matrices. Wohlers [55,
pages 168-172] establishes that such scattering matrices S E U+(N, NL, NC, Nu)
exist and have the form,

S(p) = -F(Sa, SL;P) = S., 11 + S0,12SL(p)(Id - Sa,22SL(P))-'Sa,21,
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where the augmented scattering matrix

S [ Sa,11 Sa,12 1[ Sa,21 S,22

models a network of wires, transformers, and gyrators. S, is a constant, real, orthog-
onal matrix of size d = NL + Nc + 2Nu. SL(p) is called the augmented load and
models the reactive elements as

SL(P)-P INL - 1  0 e-'P1
+P IN e 0

This decomposition assumes: (1) the first NL+NC ports are normalized to zo = 1, and
(2) the remaining Nu pairs of ports are normalized to the characteristic impedance
Z0,, of each transmission line. Although some work has be done charactering these
scattering matrices, the reports in Wohlers [55, page 173] are false, as determined by
Choi [11].
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4

Existence of Matching 2-Ports in
U+(2, d)

Proving the existence of a matching 2-port in U+ (2, d) is straightforward: demonstrate
that gT : U+(2, d) - R+ is continuous and use the fact that U+(2, d) is compact.
Because gT is the composition

gT(S) = 1 -AP(sc, Yi(S, SL)) I

of linear fractional maps, the bulk of this section establishes continuity of these maps
with careful attention to boundary conditions.

Lemma 8 I sG E BH(C+), then

S -- 8

1 - scsi

is a continuous function on -BHc(C+) into BL'(jR).

Proof. Let

= 021 022 S -1

Define (E) + O012

g(e; si) .- 021S1 + 022

The problem is to delineate a useful domain and range of g(0). If SG 0, S S-1 si
and the result is immediate. If sG # 0, set r = I]soc]lK > 1 and define the open ball

{,:=fsi CH(C+) : 11s1, <r}.
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!(9) is well-defined as a mapping from B, into L'(jR). Although 9 does not
generally have the analytic properties to be a chain scattering matrix (G(9; 0) = T--),

it will have sufficient algebraic properties. First, we prove that 9(9) is continuous
on B,. Observe that (D C L-(jR, C2X 2). Let s, E B,. For all As G HOO(C+) with
jAsjloc < r-Isilsoo, it follows that sm+As belongs to B,. Consequently, g(e; s,+As)

is well-defined and the expansion

g(e; si + As) - 9(E; si)
011s 4+ 1As,

021S1 + 021As + 022 021SI + 021 As + 022

+ 012 011s5 012

021S1 + 02 1As + 022 021S1 + 022 021SI + 022

- o[As]

holds in Lcc(jR). Thus, !((9) is a continuous function on B,. Second, we prove that
!(O) preserves the unit ball. Observe that

eHJoG- [ 12 Is,1 2J.

In terms of homogenous coordinates,

- = G(E), s ) a, FE) 5 1
a, al 1 "

Then,

[-i j] J bi] p, [I]eHje[81]

= [S1 1]jSG12J S1'

= ISG12(IS1i 2 - 1)
< 0.

That is, Ib,12 < jai12 or jg(e, s)[o0 < 1. Thus, G(e)mapsBH'(C+)intoBLI(jR).
The closure is strict because g(e; 1) has unit norm.

Lemma 9 If sG E BH'(C+), then

Sl -+ []AP(sG, s)loo

is a continuous function on BH'(C+).
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Proof. With power mismatch given as AP(SG, Si) ((9, si) 1, Lemma 8 implies
that AP(sG, 0.) is a continuous function on BH'(C+). Use the fact that the norm is a
continuous function on any Banach space to get that the composition 11IAP(sc, o)II~
is continuous. ///

Lemma 10 if SG, SL E BH0 0 (C±), then the mappings

S f-+ Y1(S, SL) and SI -+Y 2 (S, 8G)

are continuous function on THc(C+, C 2 , 2) into PH' (C±).

Proof. It will suffice to demonstrate this result for YT1. Let S E iPH0(C±, C2x2) and
set

.F(S;P) = .F1(S, sL;P) = S11(P) + S12(P)SL(p)(1 - S22(P)SL(P))_ 1 S21(P).

If .SL = 0, then the result is immediate. If .SL # 0, then set r = IISLI -O > 1 and define
the open ball as

B, {S E H0 0(C+, C2X2) 11822fl00c < r}.

Then, 11822SL 1Io < 1 shows that

TF(S) = 811 + SLS12821 Z( 2 2 SL)k
k=O

converges in H00 (C+). Thus, YF is a well-defined as the mapping Y7: B, --+ H' (C+).
Likewise, for all AS E H00 (C+, C2x2), the inequality h1AS11 < 1- 11822SLIIoo gives that
.F(S + AS) is also well-defined. Then,

..'(S + AS) - Y(S)
SLS12S21 _ 81- SLS12S21

1S22SL -A 1 -1-(5 22 + AS22)SL

SLS121AS21 SLAS1 2 AS 2 1 SLAS12 1AS 2 1

1-(S22 + As22)SL 1 - (S22 + AS22)SL 1 - (S22 + As22)SL'

As AS -+0, its elements converge uniformly to zero on C+. The boundedness of
S then implies the second, fourth, fifth, and sixth terms in the expansion converge
uniformly to zero. Boundedness also gives that

s2

'7S+ AS) - YF(S) = AS22  
5

LS12S21 22L + O[AS],

where the expansion holds in H' (C±). Thus, Y is a continuous function on TH' (C+, COX 2).
To verify that YF maps into the unit ball, observe that

-TS = Y1(S'; SL) = (e; SL),
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where, as provided by Hasler and Neirynck [23, page 148]:

e -det[S] sil
-8$22 1"

(Homogenous coordinates let us drop s21 and avoid zero divisions.) The CS decom-
position gives the pointwise representation of S on jR as

_ l 0i 0Jcos(t) - sin (t) Vii 0 H
0 U22 sin(t) cos(t) 0 v22

where 0 < t < 7r/2 and un, U22, vul, and u22 have unit norm. Then,

e= uillI~ 01 -1I cos(t) V22TT22 0
COS(t)0 1

This decomposition gives that (9HJ9 = {1 - cos(t) 2}J or that I.F1(S; sL;j ) < 1.

Because h1(S; SL) is an element of H'(C+), we may invoke the maximum principle
to conclude that .lF(S;SL)K _ 1. ///

Lemma 11 Assume SC, SL E BH-(C+). Let 0 C R be non-empty and measurable.
Then, 91 (S) I= 1 AP (8G, -171(S, SL)) .l,Q

and
92(S) := 1 IIP((S, SC), SL) l00,

are continuous functions on PH' (C+, C2 ×2).

Proof. It will suffice to prove this result for 9i- Lemma 10 gives that -I (0, SL) is a

continuous function on TH'(C+, C2× 2) into BH'(C+). Lemma 8 gives that g is a
continuous mapping on BH°c(C+). Then,

G1(sc, S, SL) = 1 - Ig o.T(S)12

is also continuous. The pseudo-norm is also continuous, so we get that g1 = 1 - 119 o
. 12

.II.,Q is continuous. ///

Lemma 12 Assume so, SL E BH°'(C+). Let Q C IR be non-empty and measurable.
Then,

is a continuous function on BH-(C+, C2
1

2 ).
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With the gains 9T, gj, and g2 continuous on the BH'(C+, C2x2), existence is
settled for compact subsets of 2-ports.

Theorem 7 Assume SG, SL E BH(C+). Let Q C R be non-empty and measurable.
Let U be a non-empty compact subset of BH' (C+, C2x2). Then, gT, g1 , andg2 attain
their supremum on Ui.

In particular, U+(2, d) is compact so that matching from U+(2, d) admits a so-
lution. However, this approach does not give any information on "quality" of the
solution-how big is the gap gT(U+(2, d)) < gT(U+(2, co))? This leads to the solid
engineering question: How complex should the 2-port be to get an acceptable match ?
One approach plots the mismatch as a function of the degree d [1]. As the degree d
increases, the mismatch approaches the upper bound computed by Nehari's Theorem.
The engineer can graphically make the tradeoff between degree of the matching 2-port
and its distance from the Nehari bound. Thus, Nehari's bound provides one bench-
mark for the matching 2-ports. The remainder of this paper shows when Nehari's
bound is tight.
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5

Classes of Orbits

The following equalities convert a 2-port problem into a 1-port problem. Let U be a
subset of U+(2). Then,

SupfgT(sG, S, SL) :S E U}
= 1- inf{IIAP(sG,S,sL)II" Sc U}
= 1-inf{jIAP(Sc, S1)11 S1 C Y1(U; SL)}

= 1-inf{jJAP(S2 , SL) I0S 2 E :2 (U; S)},

where
.(U, SL) {Y1I(S, SL) :SE U1,

.F2 (U4, SG) f12 (S, SG) :S G U1

denote the orbit of the load and the orbit of the generator, respectively. Maximizing
gT is equivalent to minimizing AP on these orbits. This is why characterizing these
orbits is fundamental. Darlington's Theorem makes explicit one class of orbits.

Theorem 8 (Darlington [3]) The orbits of zero are equal

y 2 (U+(2, oc), 0) = J91(U (2, oo), 0)

and strictly dense in 9R4A1(C+).

Proof. Let S E U+(2, oo). Corollary 1 and Belevitch's Theorem give that

s gp = ± f. Th.

where (f, g, h) is a Belevitch triple. With SL = 0, then
h

s, = F1(S, 0) = 811 = -.

g

33



With SG = 0, then
TFh,

s2 = F2(S, 0) = -

Lemma 6 gives that S E A 1 (C+, C 2x2 ) so that s, and S2 both belong to BAI (C+). The
real condition in Belevitch's Theorem (B-i) puts both orbits in BA 1 (C+). However,
Corollary 1 restricts S to be rational. Thus, the orbits cannot be all of RBA 1 (C+).
Finally, by relabeling S with 1 - 2, we get equality between the orbits. To show
density, suppose s E RJBAj(C+). Because the rational functions in IJBAI(C+) are a
dense1 subset, we may approximate s(p) by a real rational function:

h
s - e l AI(C+),

9

where h(p) and g(p) may be taken as real polynomials with g(p) strict Hurwitz and
for all w E R:

g(jw)g,(jw) - h(jw)h.(jw) > 0.

By factoring g(p)g,(p) - h(p)h,(p) or appealing to the Fej~r-Riesz Theorem [48, page
109], we can find a real polynomial f(p) such that

f(p)f,(p) = g(p)g,(p) - h(p)h,(p).

The conditions of Belevitch's Theorem are met and

S(P) = 1 [h(p) f (p)1g (p) I f. (p) - h. (p)

is a lossless scattering matrix that represents a lumped, lossless 2-port. That is,
h(p)/g(p) dilates to a lossless scattering matrix S(p) for which s sl. Consequen-
tially, both orbits are dense in fBAI (C+). ///

The big question is the characterization of an orbit for a general load. For the
immediate application of Nehari's Theorem, knowing the following question would be
useful.

Question 4 For what sc E BH' (C+) is it true that .Fj(U+(2, cc), SG) is dense in

BA, (C+) ?

'Density claims on unbounded regions can be tricky. However, Lemma 1 isometrically maps
Ai(C+) = A,(D) o c and preserves the rational functions. Therefore, the dense rational functions
in A(D) map to a set of rational functions in A,(C+) that must be dense.
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The limited knowledge of compatible impedances [57] forces us to take s6 = 0.
Our optimization set simplifies by Darlington's Theorem:

maxj{9T(0,S, sL) : S E U+(2,d)}
= 1 - min{IIAP(s 2, SL)I00 : s2 E Y 2(U+(2, d); O)}

_ 1 - inf{IIAP(s2, SL)II : s2 E T2(U+(2, oo); 0)}
Darlinon 1 - inf{IIAP(s2, SL)IK :, S2 E RBAI(C+)}

< 1 - inf{IIAP(s2, SL)I 0  S2 E BH (C+)}.

The next section turns the last "inf" into a "min". This minimum is computable by
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6

Existence of Matching 1-Ports in
BH (C+)

The problem is to show that

inf{llAP(s2, sL)I0 " s2 E BH' (C+)}

admits minimizers. The trick is to realize the H' is really not relevant. What is
relevant is that the mapping

S2  - 1AP(s2 , SL)l o

is a lower semicontinuous function on a compact set. The existence of minimizers
follows from the Weierstrass Theorem. The key result is the Disk Trick.

6.1 The L' Disk Trick

Lemma 13 (L' ° Disk Trick) Let SL E BLOO(jR). Let 0 < p < 1. Define the
center function

1 -p 2

k SL 1 - P2ISLI 2 E BLOO(jR), (6.1)

the radius function
1 - I*LI2  LOj) 62

r p 1 - p2SL12 e PL-(jR), (6.2)

'Rudin [50, page 38-39] Let h be a real or extended-real function on a topological space X. If
{x G X : h(x) > Y} is open for every real oa, then h is said to be lower semicontinuous. Conversely,
h is lower semicontinuous if {x E X : h(x) < a} is closed for every real a.
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and the disk

D(k,r) { E L'((jR) " (jw) - k(jw)l < r(jw)}.

Then,

D- I D(k, r) a closed, convex subset of L' (jR).

D-2 -D(k,r) f { c-BLOO(jR)p > IIAP(¢,SL)IKo}.

D-3 -D(k, r) =-D(k, r) n -BL°°(jR).

D-4 D(k, r) a weak* compact, convex subset of L°O(jR).

Proof. Under the assumption that IISLIIo, < 1, it is straightforward to verify that
the center and radius functions are in the open and closed unit balls of Lo,(jR),
respectively.
D-1: Closure and convexity follow from the pointwise closure.
D-2: Basic algebra computes

D(k,r) = {€ E L-(jR)" p> lIAP(O, SL)o}.

The "free" result is that ItD(k,r)Il, < 1. To see this, let s := ISLlIo. The norm of
any element in D(k, r) is bounded by

1 - p 2 1 _ S2

lks 2 I+ - p2S2 -- u(s, P).

For s E [0, 1) fixed, we obtain

au -1 +S 2

Op (ps + 1)2

Thus, u(s, o) attains its maximum on the boundary of [0, 1]: u(s, 1) 1 1. Thus,JII(k,r)II. < 1.
D-3: Follows from D-2.
D-4: Convexity follows from D-1. Lemma 4 demonstrates weak* compactness. ///

Let SL G BL' (jR). Define the mapping Ap(s 2) : 7L' (jR) --- ]R+ as

Ap(s 2 ) := IIAP(S2 , SL) II.

The Disk Trick shows that Ap is a lower semicontinuous function on BL °' (jR) in the
weak* topology. Consequently, Ap admits minimizers by the Weierstrass Theorem.
This is a trivial result because 3L is the minimum. However, Ap restricted to weak*
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closed subsets is still lower semicontinuous. In particular, H'(C+) is a weak* closed
subspace of L'(jR) and we get the following result.

Theorem 9 Assume SL e BL'(jR). Then,

inf{ IAP(s 2,sL)IKo : S2 E BHc(C+)}

admits minimizers.

Because BHo(C+) is also weak* closed, we get the following result.

Theorem 10 Assume S5L e BL'(jR). Then,

inf{lIAP(s2,SL)II, : s 2 E 9lBH"(C+)}

admits minimizers.

The inequalities now read:

max{gT(O, S, SL) : S E U+(2, d)}

= 1 -min{ IAP(s2, sL)I0 : s 2 E.F2(U+(2, d); 0)}

< 1 -inf{IIAP(s 2, sL)ll : S2 E cT2(U+(2, oo); 0)}

Darlington 1 - inf{11AP(s 2 , sL)1 0 S2 E RBA,(C+)}
Theorem 9

< 1- min {IIAP(s 2, sL)I00 : S2 E BHo(C+)}.

The next section starts the process of turning the last "<" into "=". The importance
of the equality is that it connects the computable minimum on BH-(C+) to an
optimal matching 2-port---or at least a sequence of 2-ports that converge to the
minimal power mismatch.

6.2 The H' Disk Trick

Continuity in the target function projects onto the best approximation. This result
lets us squeeze the disk algebra and the H' minimizers. To start the analysis, the
next result maps Nehari's Theorem over to the right half-plane and offers a condition
for when the disk algebra supports a best approximation.

Theorem 11 (Adapted from Koosis[40, pages 193-195], and Hintzman [32], [33])
Let k G 1-i-Co(jR). Then,

A-1 Ilk - A1(C+)II = Ilk - A(C+)Il. = Ilk - H (C+)I11.
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A-2 There is exactly one h E H00 (C+) such that

Ik(ju) - h(jw)I = Ilk - AI(C+)Il. a.e.

A-3 If k e -i+Co(jR) admits the expansion

K = k o c- 1  K(n)zn,
n=-N

then there is exactly one h E 7ZA,(C+) such that

lk(jw) - h(jw)l = Ilk - AI(C+)1..

Proof.
A-i: The inclusions A,(C+) c A(C+) C H' (C+) force

Ilk - Ai(C+)Io > Ilk - A(C+)II. > Ilk - H(C+)11..

Let K = k o c- 1 E C(T). Lemma 1 gives

Ilk - AI(C+)Il = IlK cc - A(D) o cllI
= IIK-A(D)II

Koosis
-- 's lK - HO0 (D) I.

Ilk- H(+)100,

where the "Koosis" over the equality refers to Koosis [40, page 195-196].
A-2: Existence, uniform modulus, and unicity follow from Koosis [40] or Hintzman
[33].
A-3: Use Lemma 1 to map Hintzman's results from the disk to the right half-plane
[32]. ///

Example 3 (Hintzman's Counter-Example) Even when the target function is
continuous, best approximations from the disk algebra need not exist [33]. Denote the
real and imaginary parts of the following analytic function as

00 72

u(z) + iv(z) := -i E o
n2 nlog(n)

Construct
g(e ' ° ) = e-v(ei)(eo _

Then, g E C(T) but does not have a best approximation from A(D).
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Finally, Carleson and Jacobs [4] have a considerable generalization of Theorem 11
A-3. Their existence and uniqueness results will be used later. For now, we need the
HI Disk Trick to convert the power mismatch to a linear problem.

Lemma 14 (H' ° Disk Trick) Let SL E BH.(C+). Let 0 < p < 1. Define the
center function k and radius function r as in Equations 6.1 and 6.2, respectively.
Then,

{52 eP BH(C+) : p > IIAP(s2,sL)II} = D(k, r) n H°(C+).

Let a E H'(C+) denote a spectral factorization of r. The following are equivalent:

(a) -D(k, r) n H' (C+ ) ' 0 .

(b) Ila- 1k - H(C+)Ill < 1.

Proof. The first equality follows from Lemma 13 that gives

D(k, r) n BL'(C+) = D(k, r).

Intersect both sides with H'(C+) to get

D(k, r) n BH- (C ) = D(k, r) n H'(C+).

To establish is the existence of a spectral factorization, observe that

r > P(l - 11sL1100) =: > 0 a.e.

Lemma 1 gives that R = r o c- 1 belongs to L'(T). Because R > J > 0, it follows
that log(R) E L1 (T) and defines the outer function [15, page 24]:

A(z) := exp 12- ej + Z log(R(eit))dt) E HOO(T).A~z):exp eit - z

Lemma 1 gives that a = A o c E H'°(C+) and is also an outer function. Thus, a
spectral factorization exists.
(a)==(b) Suppose h E D(k,r) n H°(C+). Then, Ih - kj < r a.e. is equivalent to

a-1h - a-'kl < 1 a.e. Because a-1 h E H°(C+), this last inequality implies (b).
(b)=(a) Suppose Ila-'k - H-°(C+)lI < 1. By Theorem 11, there exists an H E
H°(C+) such that

1 > Ila-'k - H (C+)I, = Ila-'k - H1I a.e.

This implies that aH- kj < r a.e. Because aH E Hoc(C+), the Disk Trick gives that
aH E D(k, r) n H'(C+) or that (a) holds. ///
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Theorem 12 (H"O Mismatch) Let SL E BHOO(C+) be non-constant. Then,

Pmn = min{IIAP(s2 , SL)Iloo S2 E TH'(C+)}.

Define the center function kmin and radius function rmin as in Equations 6.1 and 6.2.
Let amin E H00(C+) denote a spectral factorization of rmin. Then,

Min-1 D(kmin, rmin) n Hx(C+) # 0

Min-2 amn kmin - H°°(C+)1[o = 1.

Proof. Because SL is non-constant, Pmin > 0. The assumption [[sLlIc[ < 1 and
Theorem 9 gives that at least one minimizer exists so that Pmin is well-defined.
Let s 2 E BHc(C+) be a minimizer. Lemma 14 implies that Min-1 holds and is
equivalent to [IamInk - am nS2]1oo < 1. If the inequality was strict, there would hold
lmin(jW) - s2(jw)l < rmin(jw) a.e., or Pmin > I1AP(s 2, SL)II. This inequality contra-

dicts the definition of Piin, so equality and Min-2 must hold. ///

Theorem 13 (H' Existence and Uniqueness) Let SL e BAI(C+) be a non-
constant function. The power mismatch problem

inf{1AP(s 2, sL)I11 : S2 e PH'(C+)}

admits a unique solution. Moreover, we obtain the equality

min{lAP(s 2 ,sL)Il : SE H (C )}
= inf{IIAP(s2 ,sL)[o : S2 E BA,(C+)}.

Proof. The assumption lsL[ko < 1 and Theorem 9 gives that a minimum exists:

pmin = min{11AP(s 2 , SL)[11, : S 2 e 7H' (C+)}.

Because SL is non-constant, Pmin > 0. Observe that

The assumption that SL is continuous and Pmin > 0 give that there is a continuous
spectral factorization amin of rmin. TO see this, observe that Lemma 1 gives that
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Rmin =rmin 0 C-1 belongs to C(T). Because R > Pmin(1 - flsLI') > 0, it follows that
log(Rmin) E C(T) and defines the outer function [15, page 241: 0

Amin(Z) := exp ( 2 it log(Rmine)d E A(T).

Lemma 1 gives that amin = Amin 0 C E A, (C+) and is also an outer function. Thus, a
spectral factorization exists in the disk algebra. Let 82 E PH'(C+) be a minimizer:

82 := argmin{ IIAP( 2, SL)Il.c : 82 EG H (+}

Theorem 12 gives that

1 lIa- kmin - H-(C±)jj.. = Ila- kmin - a- s 2 11o..

Observe that a- kmir, E 1-0 0 (jR). Term11(A-2) imle that a- S2 is unique
m2 ms asunqeTopve.h

Because ammi is outer, it follows that the minimizer2 2i louiu.T rv h
equality for the disk algebra, set

Pmin,A : = inf{IAP(S2, SL) I I S2 E BAI (D)}

and observe that Pmin < Pmin,A. The goal is to prove equality. There are at least two
approaches. First, the Disk T~ick and Theorem 11(A-1)

1Iamin AH.(±)I = Ija-Jnkmin - Ai(C+)Ic

should couple to get equality. Instead, the second approach that we use starts from
the lower semicontinuity of the power mismatch

AP(S2) := IAP(S2,SL)II.

on THoc(D) in the weak* topology. Let p, > Pmir, and Pn 4. n. There is an
enC P~H'(C+) such that Ap(s,) : p,. Let e > 0. Lower semnicontinuity implies that

{s E TH'(C±) : Ap(s) <p,, + 6}

2 1t is worth noting that Theorem 11(A-2) gives

1a- =I~kmin - a- S21 a.e.,

or Helton's Flatness Condition [30]:

rmin = lkmin -S21 a.e.
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is a weak* open neighborhood of s,. Theorem 3 shows that A, (C+) is weak* dense
in HI (C+). This weak* density implies that there is an a, E RA, (C+) that belongs
to this neighborhood. Then,

Pmin,A < A p(an) _ Pn + 6 4. Prnin + 6.

Because E > 0 is arbitrary, it follows that Pmiii,A ! Pmn ///

Thus, for .SL E BA1 (@±) and a non-constant function, the inequalities now read:

max gT (0, S, SL) : S E U+ (2, d)}I

I 1-min IAP(S2, SL) 11'0 : S2 ( T(+2 ) )
_ 1 -inf{JJAP(S 2 , SL)I :0 S2 G _F2 (U+ (2, oc); 0)}

Iango 1- inf{IAP(S2, SL) :0 S2 c RBA1 (C+)}
< 1 - inf{IAP(S2, SL)~ 11 2S 2 E BA1(D+)}

Theorem 13 Theorem 9

- 1- min {HAP(S 2,s 0l 0 :S2 C-BH'(C±)}.

The next section drops the real constraint. Removing real constraint lets us assert that
there is a lumped lossless 2-port that can get arbitrarily close to the H' minimum.

6.3 Dropping the Real Constraint

Symmetries in the target function project onto the minimizer. This result permits us
to drop the real condition.

Corollary 2 Let SL E RBH'(C+). Then,

min{II1AP(S2,SL)I,,. : S2 E C H"C)

min 11{JAP(S 2, SL) 11Io: S2 c PH' (C±)}

Proof. Let
Pmin = min{IAP(82, SL)l00 : S 2 E PHOO(C±)}.

Theorems 9 and 10, with the assumption liSL icc < 1, justify the use of the minimums.
The real constraint gives the following:

min{I11AP(S 2, SL)I :0 S2 G RPHcc(C+)} /mi0.

If we can show that there is a real S2 C Hcc(C+) such that p ..in = IIAP(S2,SL)Joo,
then the first equality is established. Lemma 13 with p ..inr computes the set of mini-
mizers:
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A real load translates to sL(p) = SL(P) for p E C+. Define

and observe that TL E H' (C+). Let S2 E D(k, r) n PH' (C+). Then,

jJA(T2SL)1.= SUP{ 2(P) SL(P) :pc
S1 -S2(P)SL(p)

= SUP{ S2 (P) -SL~p p E C+}
1S2(P)L(P)

=SUP{ S2(P) SL(P) PE C
S1 -S2(P)SLT(P)

These equalities show that T2 is also a minimizer: 9- E D(k, r) n PH- ~(C+). Because
the set of minimizers is convex, it follows that f{S 2 + T21}/2 E D(k, r) ni PH-(C+).
That is, the set of minimizers contains a real minimizer whenever the load is real. ///

It turns out that the same result occurs when we only have a minimizing sequence.

Corollary 3 Let SL E RBH'(C+). Then,

inf f 11AP(S 2, SL)II1o : S2 G RBA,(C+)}I

=inf{ IIAP(S2, SL)II S2 E PAj(C+)}.

Proof. Let
p.:=inf{IIAP(S2,sL)II,, S82 G BAI(C+)}.

Let 1 > pn ! 0 be a sequence converging down to p,, > 0. Let k., and r,, be the
associated center and radius functions from Equations 6.1 and 6.2, respectively. The
Disk Trick (Lemma 13) computes the level sets:

f{S2 EB7A, (C+) : 11IAP(S 2, SL)I 11.. ! p, D D(k,r.,) n A,(C+).

By construction, the intersection is non-empty. Let

Observe that § Te A,(C+). From the proof in Corollary 2, observe that

IlAP(K,SL)K. = IIAP(Sn,SL)jc.-
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Thus, the level sets are invariant under the "real" operator or

Ts , E D (k , r ) n A ,(C+).-

Because the level sets are convex, it follows that the following real function is also in
the level set:

2

As a element of the level set, (s2 + T)/2 satisfies

P. > AP( S2 + T2/2, SL)
> inf{f[11AP(82, SL) jjoo " S2 E BA, (C+)}

=: pOC,R.

The set inclusion forces po,, > poo. Thus, equality holds with a real load. ///

Finally, when a minimizer exists in the disk algebra and the load is real, the same
convexity arguments show that a real minimizer also exists.

Corollary 4 Let SL E lBHO(C+). If the power mismatch admits a solution on
BAI(C+):

Pmin := min{flIAP(s 2,sL)II. : s 2 E AI(C)},

then it also admits a solution on R1BAI(C+) that satisfies

min = min{IIAP(s 2, sL)I. : S2 E @BAi(C+)}.

6.4 Best Match via Darlington+Nehari

For SL E RBAI(C+) and a non-constant function, the inequalities now read:

max{og(O, S, SL) : S E U+(2, d)}

= 1 -min{IIAP(s 2, SL)IIc : 82 G 2(U+(2, d);O)}
1 -inf{ IAP(s2, SL)11 : S2 E Y2 (U+(2, oo); 0)}

Darlington 1-nIIA \s 2
- 1 - iniI '-S2, SL)I . :82 E RA(+

Corollary 3 12inf{AP(s2,
- 1 - If AP S2SL) 00 : S2 E BA 1 (C±)}

Theorem 13 Theorem 9
T 1- min {lIAP(s2, sL)l0: S2 E BH'(C+)}

Corollary 2 Theorem 101- min {IIAP(s2,SL)I0 :S2 e SBH'(C+)}.
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This result is important because it takes the minimum on the unit ball of H ° -
a computable minimum-and shows that this minimum may be approximated to
arbitrary precision by a real reflectance in the disk algebra. Darlington's Theorem says
this reflectance can be approximated to arbitrary precision by a rational reflectance.
This rational reflectance dilates to a lumped, reciprocal, matching circuit. That is,
the lumped, reciprocal 2-ports give arbitrarily close performance to the H' minimum.
Thus, any upper bounds on the transducer power gain, such as Fano's bounds, are
subsumed by the H' computation.
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7

Existence of Matching 1-Ports in
BA1 (C+)

The preceding equalities still had some infimums and left unanswered the following
question:

Question 5 What additional constraints on the load will give the existence of a
matching 2-port in U+(2, co)?

An answer begins by getting conditions for the existence of the s22 element or replacing
the "inf" in the preceeding inequalities with a "min" when optimizing over the disk
algebra.

7.1 Invariance of the H' Approximant

The basic definitions are set on the unit circle. From Duren [15, page 71]: Let
¢: R -4 C be periodic with period 27r. The modulus of continuity of 0 is the function

w(¢;t) := sup{I¢(tl) - 0(t 2)1 : tl,t 2 E P., I - t2l < t}.

A, denotes those functions that satisfy a Lipschitz condition of order ce E (0, 1]:

10(tl) - 0(t 2)1 < Altl - t21C.

C 'i+ denotes those functions with 0(n) E A, [4]. C, denotes those functions that are
Dini-continuous:

J w(; t)t-ldt < oo,
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for some e > 0. A sufficient condition for a function O(t) to be Dini-continuous is that
IO'(t)] be bounded [18, section IV.2]. Carleson and Jacobs have an amazing paper
that addresses best approximation from the disk algebra [4]:

Theorem 14 (Carleson and Jacobs [4]) I k E L'(T), then there always exists
a best approximation h E H (D):

Ilk - h~lo = Ilk + HOO(D)lco.

I] k E C(T), then the best approximation is unique. Moreover,

(a) I] k E C then h E C,,.

(b) Ij k(n) E C, then h(n) E C,.

(c) I 0 < a < 1 and k E A, then h E Aa.

(d) I O <a < 1, n E N, and k E Cn +  then h E C n+
,.

As noted by Carleson and Jacobs [4]: "the function-theoretic proofs ... are all
of a local character, and so all the results can easily be carried over to any region
which has in each case a sufficiently regular boundary." Provided we can guarantee
smoothness across oo, Theorem 14 carries over to the right half-plane.

Corollary 5 I k E -I-Co(jR), then the best approximation

Ilk - hll. = Ilk - H (C+)Il.

exists and is unique. Moreover, if k o c-1 E C,, then h o c-1 E CQ, so that

Ilk - h[Ij = Ilk - HO(C+)I] = Ilk - AI(C+)I[1.

Proof. The Caley transform c of Lemma 1 coupled with Theorem 14 gives the
existence and uniqueness of h e H' (C+) and the membership of ho c-1 in C,. Thus,
h E A 1 (C+). For the equalities, set inclusions give the following:

Ilk-H (C+)l[o = Ilkoc- - H  (D)lII

< Ilk o c- - A(T)lIl

< II c-1 - A(T) n C ,lo

Theorem 14(a) gives that

Ilk o c-i - H' (D) ]oc, = Ilk o c-1 - A(T) n Ql0oo.
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This squeezes the inequalities and we get

Ilk oC' - H'(D)Iooc = Ik oc - ' - A(T)[Io o.

In terms of the right half-plane, h e A (C+) and

Ilk - hJl = Ilk - H (C+)Il = Ilk - A1(C+) K

The key result of Corollary 5 is that both inf's in the coset norms are replaced by
min's. The trick is to map this result from the norms into the power mismatch.

Corollary 6 (At(C+) Existence and Uniqueness) Let SL E BAI(C+) be a non-
constant function. Then,

pmin = min{IIAP(s 2, SL)11I," S2 E BH'(C+)}.

Define the center function kmin and radius function rmin as in Equations 6.1 and
6.2. The radius function rmin admits a spectral factorization amin E A,(C+). If
aminkin Oc 1 E C,, then the power mismatch problem in the disk algebra admits a
unique solution that attains the H' minimum also:

pmin = min{ll[AP(s 2, sL)Ilo. : S2 E BA,(C+)}.

Proof. The assumptions on the load and Theorem 13 give the minimum pnin. The
proof of Theorem 13 and the assumptions on the load give that ain belongs to
AI(C+). Theorem 12 (Min-2) gives that

l]aminkmin - H-(C+)110  = 1.

Lemma 5 and the C, assumption give that there is a unique h E A, (C+) such that

lla- kmi - hlm = Ia-n kmin - H-(C+)Ij.

That is, lkmin - aminhl _< rain. Noting that aminh E AI(C+) gives

{aminh} D(kmin, rmin) n A,(C+).

Conversely, any element of the intersection is also a minimizer of -am nkmi. - HO (C+) K.
Therefore, the inclusion is really an equality. ///
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7.2 Best Match via Darlington+Nehari+Carleson

If SL E RBA, (C+), the minimizers can be found in the disk algebra-provided
aminkmin o c - 1 E C,. Simple conditions that guarantee this Dini-continuity are as
follows.

Lemma 15 Let SL E RBA,(C+) be non-constant. Let

Pin = min{IIAP(s2, SL)II. : S2 E BHO(C+)},

where the "min" is given by Corollary 6. Define the center function kmin and radius
function rmin as in Equations 6.1 and 6.2. Let rmin admit a spectral factorization
amin E A, (C+), where Corollary 6 supplies the ezistence of amin. Assume

(a) s' E 1-C(jlR).

(b) S(p) = 0[p-2].

(C) 0 < lssl1- .-

These assumptions force a-,mio c-0 E Q,
Proof. The goal is to show that kmin o c - 1 and a-' o c-1

ami n o are differentiable with

bounded derivative. Their product is Dini-continuous and we can invoke Lemma 6.
We start by clarifying the derivative on the circle. Duren [15, page 42] points out the
expression h'(e j0 ) can have two possible meanings. It may indicate the radial limit of
h'(z) or it may indicate the derivative with respect to 0. Integrability forces the two
notions to coincide:

THEOREM [15, page 42] Let h E H(D). The following are equivalent:

(a) h E A(D) and is absolutely continuous on T.

(b) h' e H(D).

If h' E HI(D), then
d h(ejo) = jeomh'(rejo).

TO r-+l

We must verify that differentiability in C+ maps to D. Observe that if h G HOO(C+),
then H := h o c- 1 e HO(D) with

H'(z) dl+z
H'(z) = h'(c-(z))d 1  z

2= h'(cl(z))(-)2
5-z)2
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Thus, H' E H' (D), provided h' E H' (C+) and

h'(p) = O[p- 2 ] p - - oo.

Similar results hold for K = k o C- 1 E L'(T). Our goal is to show K' L(T),
under the assumptions that k E L'(jR) and

k'(jw) = [w2] W -+ 0o.

To keep the notation under control, let

k'(jw) := dk(jw).

The equation for the center function
1 2

kmin = SL 1
- Pmins

gives
L- + 2 i - 2 S t

2 2-2L

= i (1 -SL - PminSLSL(1- pm~isLI2 )2

Assumptions (a), (b), and I]SLI[* < 1 give that Kmin := kmin o c has Kmi n E C(T).

Likewise, the equation for the radius function
1 -I1s~l

rmin = Pain 1 - p iflSL 2

gives
(1 2 SLSL + SLSL

= -m(1 - Pain) (I - p2inlSLt2)2Tmii n Iain

Assumptions (a), (b), and tIsLIJ. < 1 give that Rmin := rmin o c has R',i n E C(T).
The spectral factorization of rain has the spectral factorization on the unit disk as

Amin (Z) := amin 0 C1'(z) =exp ( 2- j7l +,tZ log(Rmin(eil))dt)

Assumption (c) gives that

h(z) I 27r eat + z log(Rmin(ejt ))dt27r: o eit -z

belongs to H(D). Differentiate with respect to 0 and use integration by parts:

jzh'(z) = dh(re')

1 f 2r d f ei(t-) + rlog(Rmin(ejt))dt

2r O ei(t 0 ) - r
1 f eit + z I

S min(e (et)jejtdt.
27,J eil -  m. a (,j ) R
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Denote the Poisson kernel as

(eit - r)

Then,

71 2~r t Rin (eit) *t

jzA~~(z I Amjn(z)lIexp + 10 f7P('r, _O R in(ej t) lrn(J)dt)
~ ~ ~ 7 Imn7Iepi~ ~,t-)Rmm (eit) S~n)

< 00.

Thus, Ari E HcC(D). The continuity of R' in/Rmin gives that A' iE A(D). The
exponential form gives that (1/Amijn)' is also in A(D). We see that both Kmjn and
(1 /Am in) have derivatives that are bounded in magnitude. Thus, Km..in/Am..jn E Cw.//

If Lemma 15 holds, then the inequalities now read:

max fgT (0, S, SL) : S e U1 (2, d)}1
- min{ I IAP(S2, SL) 00 : 82 E z:2 (U' (2, d);0)}

1-inf{fII1AP(S2 , SL)I112 : S2 E F2 (U+ (2, co); 0)}

Darlington Corollary 1- m11IPss)I 2  -fB 1 C)

Corollary 3 Corollary 612I - min {AP(S2, SL)I 0: S2 E: A, (C+)}

Theorem 13 Theorem 912I 1- min {IAP(S2, SL)II0 :8s2 E BH'(C )
Corollary 2 Theorem 1012I 1- min IIAP(S2, SL)I00 : S2 E RBH' (C+)}

The remaining "inf" and the research problems that arise when tying this 1-port
approach back to the matching 2-port conclude this report.
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8

Research Topics, Applications, and
Transitions

This section organizes the questions raised by this report into several research topics
and makes explicit wideband applications of the H00 techniques. For concreteness, we
conclude with two applications that demonstrate how the electrical engineer can use
the information provided by the H' computations to benchmark matching circuits.
The key to applying the H' techniques is the conversion of the matching problem-
a optimization problem over classes of lossless 2-ports-into an equivalent 1-port
problem. It is this 1-port problem that is computable and bounded by the HI
techniques. Various continuity conditions make these bounds tight and assert the
existence of solutions for the 1-port problem. However, this report did not emphasize
that the reflectance s2 of an optimal matching 1-port is also produced. This matching
reflectance arises whenever the Hankel matrix Ho of Nehari's Theorem admits a
maximizing vector [58]. Thus, is it is natural to consider how this 1-port matching
information lifts to a matching 2-port.

Thus, our first research topic focuses on completing the analysis of the preceeding
section regarding the existence of s 2 (Question 5) Computing

inf{flAP(s 2,sL)II, S2 E T2(U'(2,oo); 0)}

over the orbit of sG = 0 forces

52 S2 2 + S21SC(1 S11SG)-S12sr=0 = S22

to be rational (Darlington's Theorem or Corollary 1). A solution for a matching
2-port in U+(2, co) can be obtained-provided one puts conditions on a,, kmin that
guarantee Theorem 11(A-3) has a rational minimizer. These conditions and the
extension of Theorem 11(A-3) are the first research topic.
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The second research topic enlarges the set of lossless 2-ports. The scattering ma-
trix of a lossless 2-port is continuous if and only if the 2-port is lumped. At high fre-
quencies, lumped elements give way to distributed elements, such as the transmission
line. The scattering matrix of the transmission line is not continuous (Example 2).
The scattering matrices for both the lumped and distributed 2-ports are contained
in U+(2). The converse asks if every scattering matrix in U+(2) corresponds to a
physical 2-port (Question 3). If U+(2) has a physical meaning, the corresponding
matching problem

inf{IIAP(s2, sL)]00 : S2 E -T2(U+(2); 0)},

whether or not a solution S2 exists, and how a solution 82 dilates to a matching 2-port

have a physical meaning. However, not all such s2's can dilate to a lossless 2-port.

Wohlers [55, page 100-101] shows that the 1-port with impedance z(p) = arctan(p)
cannot dilate to an S E U+(2). The Douglas-Helton result precisely characterizes
those elements in the unit ball of H' that came from a lossless N-port.

Theorem 15 ([13], [14]) Let S(p) G PH-(C+, C"X') be a real matrix function.
The following are equivalent:

(a) S(p) admits an real inner dilation S(p) such that

S(p)=[ S(p) S1 2(p)1
S21(P) S22(P)

(b) S(p) has a meromorphic pseudo-continuation of bounded type to the open left half-
plane C_. That is, there exists a 0 C H'(C_) and an H E Ho(C_,CN ×N)
such that

Hlim S(or + jw) = lim -(-a + jw) a.e.
C-40 0-+

(c) There is an inner function 0 E H' (C+) such that qSH E H,(C+, CNXNV).

Let A4 denote the subset of TH'(C+) of functions that have meromorphic pseudo-
continuations of bounded type. A general Carleson-Jacob line of inquiry opens up to
explore when the inequality

inf{IlAP(s2, sL)I 0 : 82 E M} > min{IIAP(s2, sL)l : s2 E PH'(C+)}

holds with equality. Thus, this second research topic contains a host of issues all
related to the physical meaning of the Darlington dilation.

The third research topic addresses a current limitation of the H' approach: How

does Darlington's Theorem generalize? Mathematically, we are asking for a "unit-ball"
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characterization of an orbit so Nehari's Theorem can be applied. This characterization
is the General Darlington Problem posed in Question 4: What is the orbit of a general
reflectance F1(U, SL) ? We can also generalize U+(2, co) and ask about the orbit of SL
over all lumped 2-ports. The problem is to characterize all reflectances that belong
to

U l(U*(2, d),sL)
d>O

and its closure. The question of when a reflectance SL belongs to the orbit of another
reflectance s' means that there is an S' E U+(2) such that SL = .Tl(S', s' ). The
transmission zeros of S' force the inequality

inf{lAP(sG, Tl(S, sL))IIo : S E U+(2)}

> inf{jjAP(sc,.FI(S,S'L))j : S E U+(2)}.

This theory of compatible impedances is an active research topic in electrical engineer-
ing [57] and has links to the Buerling-Lax Theorem [28].

The final research topic revisits the general matching problem and the preceeding
topics by restricting the frequency band Q to be a finite subset of R. The problem is
to maximize the transducer power gain

sup{IIGT(SG, S, SL)jI-,Q : S EU,

where the frequency band 2 = [wmin , Wmax].

Although these topics are mathematical, the application to commercial venues and
the Fleet is direct. Table 8.1 lists several active and passive devices that explicitly use
wideband matching to improve performance. The H' applications to the transducers,

Table 8.1: Selected applications that use wideband impedance matching to optimize
performance.

Device Frequency Reference
Acoustic transducers VLF, LF
Antenna: Navy ship HF [51]
Antenna: microstrip SHF [2], [8]
Circulator: strip-line SHF [37]
Radar links: photodetector RF [24], [21]
Fiber-Optic links SHF [6]
Satellite links 3.6-4.2 GHz [43]
Amplifiers 2-20 GHz [9], [20]
Amplifiers SHF [38]
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antenna, and communication links are immediate. The amplifier is an active 2-port
that requires a more general approach. The matching problem for the amplifier is
to find input and output matching 2-ports that simultaneously maximize transducer
power gain, minimize the noise figure, and maintain stability. Although a more
general problem, this amplifier-matching problem fits squarely in the H' framework
[27], [28], [29] and is a current topic in ONR's H' research initiative [44].

We close with two demonstrations of the H' techniques. The examples show that
the H' techniques are not tied to an operating band. The examples also show how
an engineer can assess design requirements and benchmark matching circuits. The
first example is the impedance matching of an antenna. Recent measurements were
acquired on the forward-mast integrated HF antenna of the LPD 17, an amphibious
transport dock. The H' bound for this antenna over 9 to 30 MHz sets the best pos-
sible VSWR at approximately 2.37. Figure 8.1 uses this VSWR bound to benchmark
several classes of matching circuits. Each circuit's VSWR is plotted as a function of
the degree d (the total number of inductors and capacitors). The dashed lines are
the VSWR from the low- and high-pass ladders containing inductors and capacitors
constrained to practical design values. The solid line is the matching estimated from
U+(2, d). A transformer performs as well as any matching circuit of degree 0 and
as well as the low-pass ladders out to degree 6. The high-pass ladders get closer to
the VSWR bound at degree 4. A perfectly coupled transformer (coefficient of cou-
pling k = 1) offers only a slight improvement over the transformer. Thus, the circuit
designer can graphically assess trade-offs between various circuits in the context of
knowing the best match possible for any lossless 2-port.
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VSWR Bounds for xL=1Vd171wd4_2; Matched by the 2-ports in U(2. d)

4.5
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Degrec d

Figure 8.1: Comparing the matching performance of several classes of 2-ports for the
LPD17FWD4_2 antenna operating over 9 to 30 MHz with the H' bound [1].

For our final application, we turn to the optical region. A typical fiber-optic link
is shown in Figure 8.2 and described by Chapelle [6]: "An optical fiber couples the
light emitted from a semiconductor laser diode and guides it to the junction of a
photodiode. An input circuit is required to match the very low impedance of the
forward biased laser diode to the 50-ohm source impedance. An output circuit is
necessary for matching the very high impedance of the reverse biased photodiode the
50-ohm load impedance."

iL 
1
p.C

Impedance LasrImpedance
Input Matching Diode -. Optical Photo- Output

IM ge Fiobo- 
m atching

Circuit ddFiber o circuit

0--------0- l' 'L = p .0

Figure 8.2: A fiber-optic link with impedance-matching circuits [6].

Figure 8.3 presents the equivalent circuits for a laser diode and photodiode [6]. The
circuits were used to make the matching computations reported in Table 8.2. Table 8.2
compares the H' bound to the matching performance of an ideal transformer and an
ideal transmission line. Knowing the best possible transducer power gain permits the
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engineer to either select a matching circuit, or to consider other types of matching
circuits. For example, neither the transformer or the transmission line reveal the
matching performance of the photodiode. The engineer relying on these circuits
classes to match the photodiode would be mislead. In contrast, the H' bound
provides a benchmark to assess the quality of any matching circuit. In the case of the
photodiode, the gap between the H' bound and the matching in Table 8.2 encourages
exploration of other circuits. For example, a coupled coil matches the photodiode with
GT, c = 0.2348. From the H ' bound, the engineer knows the absolute improvement
provided by a coupled coil. The engineer can use this information to assess the benefit
of matching with a coupled coil, or continue the search for a better matching circuit.

iL

R, R,,

R , L n] = i,, .- CI,

T CD

Figure 8.3: Equivalent circuits of a laser diode and photodiode operating over 6 to
12 GHz [6]. Laser diode parameters: RD = 4.2Q, R 1 = 0.5Q, R 2 = 4.4Q, CD = 4.0
pF, L, = 0.2 nH. Photodiode parameters: Rpd = 2.7Q, Cd = 0.55 pF, L, = 0.20 nH.

Table 8.2: Matching results for the laser and photodiode. The transducer power gain
GT estimated for a transformer and a transmission line is compared to the H' bound.

Data Method GT

Chapelle LD H' 0.9840
Transformer 0.5822
Transmission Line 0.6913

Chapelle PD H 0.3620
Transformer 0.1229
Transmission Line 0.1555
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the transducer power gain computable as an (easy) eigenvalue problem. This report shows that continuity conditions make this
Nehari bound tight.
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